No notes, books, electronic devices, or outside materials of any kind.

Read each problem carefully and simplify your answers.

Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.

 $\overline{1(20 \text{ pts})}$. Find the values of the given trig functions at the given values of t. Write "DNE" when appropriate. Supporting work not required on this problem.

t	0	3	$\frac{5}{6}$	$-\frac{17}{6}$	$\frac{3}{4}$	$-\frac{17}{2}$
$\sin t$						
$\cos t$						
$\tan t$						
$\cot t$						
$\sec t$						
$\csc t$						

2(3 pts). Convert -64° to radians.

3(3 pts). Find the arclength subtended by a central angle of 2 radians in a circle of radius $3 \, \mathrm{cm}$.

4(26 pts). Find the following.

a.
$$\cos\left(\frac{3}{8}\right)$$

b.
$$\sin(-\frac{5}{12})$$

c.
$$\tan^{-1}(\sqrt{3})$$

d.
$$\sin^{-1}(-\frac{1}{2})$$

d.
$$\sin^{-1}(-\frac{1}{2})$$
 e. $\sin(\tan^{-1}(2))$

f.
$$\cos^{-1}\left(\cos\left(\frac{7}{5}\right)\right)$$

5(13 pts). Sketch one cycle of the graph of $y = 2 - \cos(3x - \frac{1}{4})$. Draw the axes where you wish and label hashmarks so as to clearly indicate every point in your cycle where the cosine equals 0, 1, or -1. What is the amplitude of this function?

6(9 pts). Sketch one cycle of the graph of $y = 2 \sec (3x - \frac{1}{4})$. Draw the axes where you wish and label hashmarks so as to clearly indicate every point in your cycle where the secant equals 1 or -1. Give the equation(s) of any asymptotes that occur in your cycle. What is the period of this function?

7(8 pts). Suppose that $\sin x = -\frac{1}{3}$ and that $\frac{1}{2} < x < \frac{3}{2}$. Find the values of the other five trig functions at x.

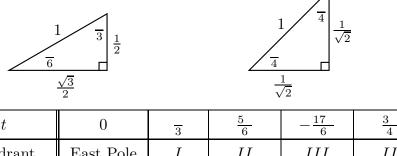
8(5 pts). Use the substitution $x = b \tan \theta$, $-\pi/2 < \theta < \pi/2$ to rewrite the algebraic expression $\sqrt{b^2+x^2}$ as a trigonometric expression without radicals. You may **not** assume that b > 0.

9(13 pts). Find all real solutions x to the given equation.

a.
$$tan(3x) = \sqrt{3}$$

b.
$$\cos^2 x + 3\cos x = 1 + \sin^2 x$$

1.(Source: 4.2.15-32, 4.2.more.1, 4.4.3-18) Determine the reference number of each angle and the quadrant containing its terminal point. Draw a vertical line from the terminal point to the x-axis and a line from the terminal point to the origin. Look for these two triangles. You were not required to rationalize denominators.



t	0	3	$\frac{5}{6}$	$-\frac{17}{6}$	$\frac{3}{4}$	$-\frac{17}{2}$
quadrant	East Pole	I	II	III	II	South Pole
ref. number	0	3	6	6	$\overline{4}$	$\overline{2}$
$\sin t$	0	$\sqrt{3}/2$	1/2	-1/2	$1/\sqrt{2}$	-1
$\cos t$	1	1/2	$-\sqrt{3}/2$	$-\sqrt{3}/2$	$-1/\sqrt{2}$	0
$\tan t = \frac{\sin t}{\cos t}$	0	$\sqrt{3}$	$-1/\sqrt{3}$	$1/\sqrt{3}$	-1	DNE
$\cot t = \frac{\cos t}{\sin t}$	DNE	$1/\sqrt{3}$	$-\sqrt{3}$	$\sqrt{3}$	-1	0
$\sec t = \frac{1}{\cos t}$	1	2	$-2/\sqrt{3}$	$-2/\sqrt{3}$	$-\sqrt{2}$	DNE
$\csc t = \frac{1}{\sin t}$	DNE	$2/\sqrt{3}$	2	-2	$\sqrt{2}$	-1

2.(Source: 4.1.28,31) $-64^{\circ} \frac{180^{\circ}}{180^{\circ}} = \frac{-16}{45} \pi$ radians.

3.(Source: 4.1.69,70) Arclength = $s = \theta r = 2 \cdot 3 = 6$ cm.

4a.(Source: 4.5.37) Use the half-angle identity $\cos^2 x = \frac{1}{2}(1 + \cos 2x)$ with $x = \frac{3}{8}$ and get

$$\cos^{2}\frac{3\pi}{8} = \frac{1}{2}\left(1 + \cos\left(\frac{3\pi}{4}\right)\right) = \frac{1}{2}\left(1 + \frac{-1}{\sqrt{2}}\right).$$

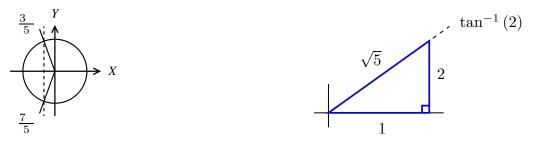
(We found $\cos\left(\frac{3}{4}\right)$ in the table above.) Since $\frac{3}{8}$ is in Quadrant I, we expect its cosine to be positive. Therefore take the positive root to find $\cos\frac{3}{8} = \sqrt{\frac{1}{2}\left(1 - \frac{1}{\sqrt{2}}\right)}$.

4b.(Source: 4.5.8) $\sin\left(-\frac{5}{12}\right) = \sin\left(\frac{4}{12} - \frac{9}{12}\right) = \sin\left(\frac{3}{3} - \frac{3}{4}\right) = \sin\left(\frac{3}{3}\right)\cos\left(\frac{3}{4}\right) - \cos\left(\frac{3}{3}\right)\sin\left(\frac{3}{4}\right)$ (See table above for these sines and cosines.) $= \frac{\sqrt{3}}{2} \cdot \frac{-1}{\sqrt{2}} - \frac{1}{2} \cdot \frac{1}{\sqrt{2}} = \frac{-\sqrt{3}-1}{2\sqrt{2}}$.

4c.(Source: 4.7.2) $\tan^{-1}(\sqrt{3})$ is the unique angle in $(-\frac{1}{2}, \frac{1}{2})$ whose tangent is $\sqrt{3}$. (We saw this angle in the table above.) $\tan^{-1}(\sqrt{3}) = \frac{1}{3}$.

4d.(Source: 4.7.more.2g) $\sin^{-1}\left(-\frac{1}{2}\right)$ is the unique angle in $\left[-\frac{1}{2}, \frac{1}{2}\right]$ whose sine is $-\frac{1}{2}$, so $\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{1}{6}$.

4e.(Source: 4.7.more.7m) $\theta = \tan^{-1}(2)$ is the angle in $(-\frac{1}{2}, \frac{1}{2})$ whose tangent is 2. Since its tangent is positive, we know that θ is in Quadrant I. Use $\tan \theta = 2$ to label the horizontal and vertical legs of the triangle in Quadrant I. (See the figure on the right below.) Find the missing side $(=\sqrt{5})$ by the Pythagorean theorem. Then sine of θ is $y/r = 2/\sqrt{5}$.



You can also solve this problem from the Pythagorean identity $\sec^2 \theta = \tan^2 \theta + 1 = 2^2 + 1 = 5$. Since θ is in Quadrant I, its secant is positive, and so $\sec \theta = \sqrt{5}$. Then $\sin \theta = \tan \theta \cos \theta = 2 \cdot \frac{1}{\sqrt{5}}$.

4f.(Source: 4.7.more.5q) $\frac{7}{5}$ is in Quadrant III and its cosine is the x-coordinate of its terminal point. $\cos^{-1}\left(\cos\left(\frac{7}{5}\right)\right)$ is the angle θ in $[0,\pi]$ for which $\cos\theta=\cos\left(\frac{7}{5}\right)$. Since the angle between the terminal side of $\frac{7}{5}$ and the x-axis is $\frac{2}{5}$, θ must be $\frac{3}{5}$. (See the figure on the left above.)

5.(Source: 4.3.31-36,43) The function $y = 2 - \cos(3x - \frac{1}{4})$ will go through one cycle when the angle inside the cosine goes from 0 to 2π .

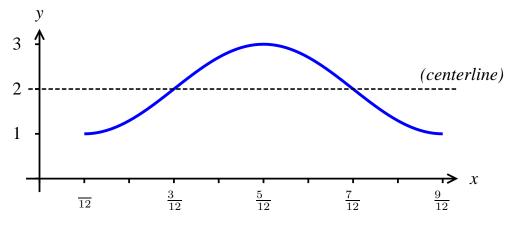
$$0 \le 3x - \frac{\pi}{4} \le 2\pi$$

$$\frac{\pi}{4} \le 3x \le 2\pi + \frac{\pi}{4} = \frac{9\pi}{4}$$

$$\frac{\pi}{12} \le x \le \frac{9\pi}{12}$$

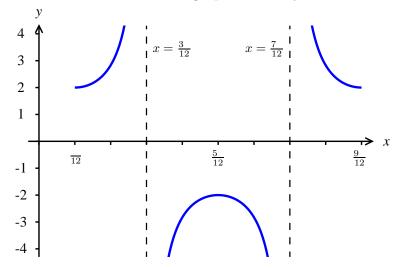
So, our cycle of the cosine will start at $x = \frac{9}{12}$ and end at $x = \frac{9}{12}$.

The negative sign reflects the graph of cosine across the x-axis, and the 2 shifts the curve up two units, so that the new centerline of the curve is y = 2. The minimum value of y is 1, and the maximum value is 3. The amplitude of the this function is 1.



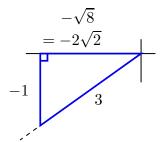
6.(Source: 4.4.39,41) $2 \sec \left(3x - \frac{1}{4}\right)$ will go through one cycle when $\frac{1}{12} \le x \le \frac{9}{12}$, as in Problem 5. The **period** is the length of this interval, or $\frac{8}{12} = \frac{2}{3}$.

sec θ is the reciprocal of $\cos \theta$, so the secant is positive when the cosine is positive, negative when the cosine is positive, ± 1 when the cosine is ± 1 , and has a vertical asymptote when the cosine has a zero. The 2 stretches the graph vertically.



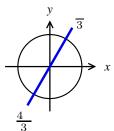
7.(Source: 4.2.3, 4.4.23) Since $\frac{1}{2} < x < \frac{3}{2}$ and $\sin x < 0$, we know that x is in Quadrant III. Use $\sin x = -1/3$ to label the vertical and hypotenuse of the triangle in Quadrant III. Find the missing side by the Pythagorean theorem.

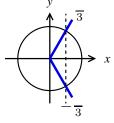
$$\sin x = -\frac{1}{3}$$
 $\tan x = \frac{1}{2\sqrt{2}}$ $\csc x = -3$
 $\cos x = -\frac{2\sqrt{2}}{3}$ $\cot x = 2\sqrt{2}$ $\sec x = -\frac{3}{2\sqrt{2}}$



8.(Source: 4.4.48) $\sqrt{b^2 + (b \tan \theta)^2} = \sqrt{b^2 + b^2 \tan^2 \theta} = \sqrt{b^2 (1 + \tan^2 \theta)} = \sqrt{b^2 \sec^2 \theta} = |b \sec \theta| = |b| \sec \theta$. This last equality is due to the fact that $\sec \theta > 0$, because $-\pi/2 < \theta < \pi/2$. Note that we can't say that $\sqrt{b^2} = b$ unless we assume that $b \ge 0$. 9a.(Source: 4.8.30) $\tan(3x) = \sqrt{3}$ means that the terminal side of the angle 3x has slope $\sqrt{3}$. See figure on left below.

$$3x = \frac{\pi}{3} + 2\pi n$$
 or $\frac{4\pi}{3} + 2\pi n$, and therefore $x = \frac{\pi}{9} + \frac{2\pi n}{3}$ or $\frac{4\pi}{9} + \frac{2\pi n}{3}$.





9b.(Source: 4.8.more.1p) Rewrite entirely in terms of $\cos x$, then get zero on one side and factor the other. $\cos^2 x + 3\cos x = 1 + (1 - \cos^2 x)$ implies $0 = 2\cos^2 x + 3\cos x - 2 = (2\cos x - 1)(\cos x + 2)$, which implies $\cos x = \frac{1}{2}$ or $\cos x = -2$. See figure on the right above. $\cos x = -2 < -1$ has no solutions, but $\cos x = \frac{1}{2}$ implies $x = \pm \frac{1}{3} + 2\pi n$.